DASAR-DASAR
TEORI PENARIKAN CONTOH
SAMPLING adalah Pendugaan karakteristik suatu populasi
berdasarkan contoh (sample) yang diambil dari populasi tersebut.
SIMPLE RANDOM SAMPLING
KASUS 1:
Misalkan dalam suatu kelas, apabila akan dipilih 10
orang wakil:
•
Apakah
populasinya?
•
Berapakah ukuran populasinya?
•
Apakah unit
contohnya?
•
Apakah sampling
frame-nya?
•
Berapakah ukuran
contoh-nya?
•
Berapakah
intensitas sampling-nya?
Secara statistik, n dapat dihitung:
Apabila fpc diabaikan: Apabila fpc
digunakan:
Pendekatan dari nilai kisaran (range):
Pada tingkat kepercayaan 95%:
Pada tingkat kepercayaan 99%:
KASUS 2
(Simple Random Sampling):
Suatu tim survey telah melakukan kegiatan
inventarisasi di suatu petak hutan tanaman Acacia mangium yang luasnya
40 ha. Kegiatan inventarisasi dilakukan
dengan intensitas sampling 2,5% menggunakan unit contoh berupa plot lingkaran
seluas 0,1 ha yang diletakkan secara acak dalam tegakan. Dari kegiatan
tersebut, diperoleh data sebagai berikut:
Tentukanlah:
Rata-rata
volume tegakan per plot dan per hektar!
Ragam
rata-rata volume per plot dan per hektar!
Koefisien
keragaman! Apa artinya?
Selang kepercayaan 95% bagi rata-rata volume per
hektar!
Nilai dugaan bagi total volume tegakan!
Penduga
selang bagi total volume tegakan!
Kesalahan
penarikan contoh!
Lihat kembali soal pada Kasus 2: Anggaplah data
tersebut merupakan hasil survey pendahuluan.
· Apabila dikehendaki kesalahan sampling (SE) maksimum
setengah kali lebih kecil dari SE survey pendahuluan tersebut, berapakah
besarnya ukuran contoh yang harus diambil pada survey utama nantinya?
(hitunglah dengan dan tanpa fpc)
· Dari hasil survey tahun sebelumnya diketahui bahwa
potensi kayu rata-rata di HP Gunung Walat berkisar antara 75 sampai 150 m3/ha. Apabila pada tahun ini akan dilakukan survey
potensi dengan kesalahan sampling maksimum yang dikehendaki sebesar 5%,
berapakah ukuran contoh yang harus diambil? (hitunglah pada selang kepercayaan
95%)
SYSTEMATIC
SAMPLING DAN STRATIFIED SAMPLING
Interval
(k) antar unit contoh:
Interval ditentukan berdasarkan jarak (datar) antar
plot:
Rata-rata contoh untuk stratum ke-h:
Ragam rata-rata contoh untuk stratum ke-h:
Total dugaan untuk stratum ke-h:
Ragam total dugaan untuk stratum ke-h:
Rata-rata populasi: Ragam
rata-rata populasi:
Total dugaan populasi: Ragam total
dugaan populasi:
Selang kepercayaan (1-a).100% bagi rata-rata populasi:
Selang kepercayaan (1-a).100% bagi total populasi:
atau dapat dihitung dari SK rata-rata:
Kesalahan penarikan contoh (sampling error):
KASUS 3
(Simple Random Sampling):
Survey di hutan tanaman Jati dilakukan dengan
menggunakan metode penarikan contoh sistematik berlapis (stratified
systematic sampling) dengan satuan contoh berupa plot lingkaran berukuran
0,04 ha. Sebagai dasar stratifikasi
digunakan kelas umur (KU), yakni KU III (luas 10 ha) dan KU IV (luas 12
ha). Dari hasil survey tersebut
diperoleh data sebagai berikut:
Tentukan:
Rata-rata dan ragam volume tegakan per hektar pada
tiap stratum?
Total volume dan ragamnya untuk tiap
stratum?
Rata-rata dan ragam volume per hektar
pada seluruh tegakan?
Selang kepercayaan 95% bagi rata-rata
volume per hektar?
Selang kepercayaan 95% bagi total volume
seluruh tegakan?
Kesalahan penarikan contoh?
SAMPLING
WITH UNEQUAL PLOT SIZE (TREE SAMPLING)
Jari-jari (R6) “plot semu”: R6
= r6 + ½D6
Luas (ha) “plot semu”: L = (p .R62)/10000
Perhitungan dalam n-tree sampling:
Volume = V1+V2+V3+…+½Vn Lbds = B1+B2+B3+…+½Bn
KASUS 4
(Tree Sampling)
Perhatikanlah layout 3-tree sampling berikut
ini:
Hitunglah volume tiap pohon jika diketahui tarif volume:
Berapakah luas plot?
Berapakah volume dalam plot tersebut?
PENDUGAAN
RASIO
KASUS 5
(Pendugaan Potensi Tegakan)
Data berikut adalah hasil inventarisasi pada tegakan
Jati KU IV seluas 20 ha dengan metode 6-tree sampling:
1) Hitunglah volume rata-rata per hektar!
2) Tentukan penduga selang bagi total volume tegakan!
3) Berapakah besarnya kesalahan sampling?
SAMPLING
WITH UNEQUAL PLOT SIZE (LINE/STRIP SAMPLING)
Populasi dibagi atas N total jalur:
Jalur contoh (n) ditetapkan sesuai intensitas sampling
(IS):
Jalur ditempatkan secara sistematik dengan interval
(k):
KASUS 6 (Line/Trip Sampling)
Berikut ini adalah hasil inventarisasi dengan metode line
sampling (dengan lebar jalur 20 m) pada kawasan hutan seluas 180 ha (dengan
panjang base-line 2000 m).
Berdasarkan penduga rasio:
Tentukan penduga selang bagi rata-rata
volume per hektar
Tentukan penduga selang bagi total volume tegakan
Berapakah kesalahan samplingnya?
PENDUGAAN
PARAMETER (REGRESI LINEAR)
Rumus-rumus dalam penduga regresi:
Penduga
nilai tengah/rata-rata:
dimana:
Penduga
ragam rata-rata:
dimana:
Penduga
total populasi:
Penduga
ragam total:
Penduga selang rata-rata:
Penduga selang total:
atau:
Kesalahan sampling:
KASUS 7
(Regresi Linear)
Berikut ini adalah hasil inventarisasi dengan metode line
sampling (dengan lebar jalur 20 m) pada kawasan hutan seluas 180 ha (dengan
panjang base-line 2000 m). Misalkan diketahui rata-rata luas jalur dalam
populasi tersebut adalah 0.75 ha/jalur:
Berd asarkan penduga regresi:
Tentukan penduga selang bagi rata-rata
volume per hektar
Tentukan penduga selang bagi total
volume tegakan
Berapah kesalahan samplingnya?
Lakukan perhitungan dengan pendekatan SRS dan
bandingkan hasilnya terhadap penduga regresi
Tidak ada komentar:
Posting Komentar